Exact asymptotics of the stochastic wave equation with time-independent noise
نویسندگان
چکیده
Dans cet article, nous étudions l’équation des ondes stochastique en dimensions d≤3, dirigée par un bruit gaussien W˙ qui ne dépend pas du temps. On suppose que soit le est blanc, la fonction de covariance satisfait une propriété d’échelle similaire au noyau Riesz. La solution interprétée dans sens Skorohod utilisant calcul Malliavin. obtient comportement asymptotique exact p-ième moment lorsque temps grand, p grand. Pour cas critique, i.e. si d=3 et on transition pour deuxième fini.
منابع مشابه
Asymptotics of the solutions of the stochastic lattice wave equation
We consider the long time limit theorems for the solutions of a discrete wave equation with a weak stochastic forcing. The multiplicative noise conserves the energy and the momentum. We obtain a time-inhomogeneous Ornstein-Uhlenbeck equation for the limit wave function that holds both for square integrable and statistically homogeneous initial data. The limit is understood in the point-wise sen...
متن کاملSmall Ball Asymptotics for the Stochastic Wave Equation
We examine the small ball asymptotics for the weak solution X of the stochastic wave equation ∂X ∂t (t, x)− ∂ X ∂x (t, x) = g(X(t, x)) + f(t, x)dW (t, x) on the real line with deterministic initial conditions.
متن کاملMoment bounds and asymptotics for the stochastic wave equation
We consider the stochastic wave equation on the real line driven by space–time white noise and with irregular initial data. We give bounds on higher moments and, for the hyperbolic Anderson model, explicit formulas for second moments. These bounds imply weak intermittency and allow us to obtain sharp bounds on growth indices for certain classes of initial conditions with unbounded support. c ⃝ ...
متن کاملExact and fast numerical algorithms for the stochastic wave equation
On the basis of integral representations we propose fast numerical methods to solve the Cauchy problem for the stochastic wave equation without boundaries and with the Dirichlet boundary conditions. The algorithms are exact in a probabilistic sense. 1 Statement of the problem and integral representations Consider the stochastic wave equation ∂X ∂t (t, x)− a2 X ∂x (t, x) = g(t, x) + f(t, x) dW (...
متن کاملExact Time-Optimal Control of the Wave Equation
The time-optimal control of a distributed parameter system is derived in closed form. The class of systems studied in this work is distributed parameter systems whose dynamics are governed by the wave equation. A frequency domain approach is utilized to arrive at the time-optimal solution that is bang-off-bang. To corroborate the optimally of the control profile derived for the distributed para...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'I.H.P
سال: 2022
ISSN: ['0246-0203', '1778-7017']
DOI: https://doi.org/10.1214/21-aihp1207